
Convert polarization score table to an Assay or Assay5
PolarizationScoresToAssay.Rd
Convert polarization score table to an Assay or Assay5
Usage
PolarizationScoresToAssay(object, ...)
# S3 method for class 'data.frame'
PolarizationScoresToAssay(object, values_from = c("morans_z", "morans_i"), ...)
# S3 method for class 'MPXAssay'
PolarizationScoresToAssay(object, values_from = c("morans_z", "morans_i"), ...)
# S3 method for class 'CellGraphAssay'
PolarizationScoresToAssay(object, values_from = c("morans_z", "morans_i"), ...)
# S3 method for class 'CellGraphAssay5'
PolarizationScoresToAssay(object, values_from = c("morans_z", "morans_i"), ...)
# S3 method for class 'Seurat'
PolarizationScoresToAssay(
object,
assay = NULL,
new_assay = NULL,
values_from = c("morans_z", "morans_i"),
...
)
Arguments
- object
An object with polarization scores
- ...
Not yet implemented
- values_from
What column to pick polarization scores from. Either "morans_i" or "morans_z"
- assay
Name of the
CellGraphAssay
to pull polarization scores from- new_assay
Name of the
Assay
to store the polarization scores in
Behavior
Takes an object with polarization scores in long format and returns an object with polarization scores in a wide format. The polarization score table includes Moran's I and Z scores along with p-values for each marker and component.
The wide format is an array-like object with dimensions markers x components, where each cell is filled with a polarization score. Scores that are missing from the polarization score table are replaced with 0's.
Different outputs are returned depending on the input object type:
tibble/data.frame
: returns a matrix with markers in rows and components in columnsCelGraphAssay
: returns an Assay with markers in rows and components in columnsSeurat
object: returns the Seurat object with a new Assay with markers in rows and components in columns
As many functions provided in Seurat works on Assay
objects, it is
sometimes convenient to make this conversion. For instance, if we want to
compute a UMAP on the polarization scores with RunUMAP
, we need the
values to be formatted in an Assay
. This also makes it possible
to use various visualization functions such as VlnPlot
or FeaturePlor
to show the distribution of polarization scores.
See also
Other Spatial metrics conversion methods:
ColocalizationScoresToAssay()
,
ProximityScoresToAssay()
Examples
library(pixelatorR)
library(SeuratObject)
# Load example data as a Seurat object
pxl_file <- minimal_mpx_pxl_file()
pol_scores <- ReadMPX_polarization(pxl_file)
#> ℹ Loading item(s) from: /private/var/folders/gw/bdcqhnvs0m9gs_mq8n51jtbc0000gn/T/Rtmp9yI9aG/temp_libpath1491327224194/pixelatorR/extdata/five_cells/five_cells.pxl
#> → Loading polarization data
#> ✔ Returning a 'tbl_df' object
# PolarizationScoresToAssay returns a matrix for a tbl_df
pol_scores_mat <- PolarizationScoresToAssay(pol_scores)
pol_scores_mat[1:4, 1:5]
#> RCVCMP0000217 RCVCMP0000118 RCVCMP0000655 RCVCMP0000487 RCVCMP0000263
#> ACTB -0.1335030 0.00000000 -0.2925391 -0.17816347 -0.1473378
#> B2M -0.6759472 4.55113840 1.6401548 -3.14104176 -8.7973738
#> CD102 -0.8262732 0.03074864 0.3773469 0.03870055 -0.4982260
#> CD11a 0.1816744 0.07436839 0.8086415 0.30911581 -1.8365308
# Create a Seurat object
seur <- ReadMPX_Seurat(pxl_file)
#> ✔ Created a 'Seurat' object with 5 cells and 80 targeted surface proteins
# Fetch CellGraphAssay and create new polarization
# scores Assay
cg_assay <- seur[["mpxCells"]]
class(cg_assay)
#> [1] "CellGraphAssay5"
#> attr(,"package")
#> [1] "pixelatorR"
pol_assay <- PolarizationScoresToAssay(cg_assay)
class(pol_assay)
#> [1] "Assay5"
#> attr(,"package")
#> [1] "SeuratObject"
# Convert polarization scores within a Seurat object
seur <- PolarizationScoresToAssay(seur)
# After conversion, we now have a new assay called "polarization"
seur[["polarization"]]
#> Assay (v5) data with 80 features for 5 cells
#> First 10 features:
#> ACTB, B2M, CD102, CD11a, CD11b, CD11c, CD127, CD137, CD14, CD150
#> Layers:
#> data
# Switch default assay to polarization
DefaultAssay(seur) <- "polarization"
# Visualize polarization scores with Seurat
# VlnPlot(seur, features = "CD19") +
# labs(y = "Polarization score")