
Load data from PNA PXL file into a Seurat
object
ReadPNA_Seurat.Rd
This function can be used to load data from a PXL file, and returns
a Seurat
object.
Usage
ReadPNA_Seurat(
pxl_file,
assay = "PNA",
return_pna_assay = TRUE,
load_proximity_scores = TRUE,
calc_log2_ratio = TRUE,
verbose = TRUE,
...
)
Arguments
- pxl_file
Path to a PXL file
- assay
Assay name
- return_pna_assay
Logical specifying whether the count data should be stored in a
PNAAssay
/PNAAssay5
. If set toFALSE
, the count data will be stored in aAssay
/Assay5
instead. For the latter case, many features provided inpixelatorR
will be unavailable. This can be useful if you only intend to analyze the abundance data.- load_proximity_scores
Logical specifying whether the proximity scores should be loaded into the
PNAAssay
/PNAAssay5
. If you only intend to analyze abundance data or PNA graphs, you can set this parameter toFALSE
to use less memory. This parameter only have an effect ifreturn_pna_assay = TRUE
.- calc_log2_ratio
A logical specifying whether to calculate and add a log2ratio column to the output table. Default is
TRUE
- verbose
Print messages
- ...
Additional parameters passed to
CreateSeuratObject
Details
By default, the count matrix is returned in a PNAAssay
object.
If the global option Seurat.object.assay.version
is set to "v5"
,
the function will return a PNAAssay5
object instead.
See also
Other PXL-data-loaders:
ReadPNA_counts()
,
ReadPNA_metadata()
Examples
library(pixelatorR)
# Crete example Seurat object
pxl_file <- minimal_pna_pxl_file()
seur_obj <- ReadPNA_Seurat(pxl_file)
#> ✔ Created a <Seurat> object with 5 cells and 158 targeted surface proteins
seur_obj
#> An object of class Seurat
#> 158 features across 5 samples within 1 assay
#> Active assay: PNA (158 features, 158 variable features)
#> 1 layer present: counts