
PNAAssay Methods
PNAAssay-methods.Rd
Methods for PNAAssay
objects for generics defined in other
packages
Usage
# S3 method for class 'PNAAssay'
RenameCells(object, new.names = NULL, ...)
# S4 method for class 'PNAAssay'
show(object)
# S3 method for class 'PNAAssay'
subset(x, features = NULL, cells = NULL, ...)
# S3 method for class 'PNAAssay'
merge(
x = NULL,
y = NULL,
merge.data = TRUE,
add.cell.ids = NULL,
collapse = TRUE,
...
)
Arguments
- object
A
PNAAssay
or aPNAAssay5
object- new.names
A character vector with new cell IDs. The length of the vector must be equal to the number of cells in the object and the names must be unique.
- ...
Arguments passed to other methods
- x
A
PNAAssay
object- features
Feature names
- cells
Cell names
- y
- merge.data
Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
- add.cell.ids
A character vector with sample names
- collapse
If TRUE, merge layers of the same name together
Functions
RenameCells(PNAAssay)
: Rename cell IDs of aPNAAssay
orPNAAssay5
objectshow(PNAAssay)
: Show method forPNAAssay
objectssubset(PNAAssay)
: Subset aPNAAssay
or aPNAAssay5
objectmerge(PNAAssay)
: Merge two or morePNAAssay
orPNAAssay5
objects together
Examples
library(pixelatorR)
library(SeuratObject)
pxl_file <- minimal_pna_pxl_file()
seur_obj <- ReadPNA_Seurat(pxl_file)
#> ✔ Created a <Seurat> object with 5 cells and 158 targeted surface proteins
pna_assay <- seur_obj[["PNA"]]
pna_assay <- RenameCells(pna_assay, new.names = paste0(colnames(pna_assay), "-new"))
colnames(pna_assay)
#> [1] "0a45497c6bfbfb22-new" "2708240b908e2eba-new" "c3c393e9a17c1981-new"
#> [4] "d4074c845bb62800-new" "efe0ed189cb499fc-new"
library(pixelatorR)
pxl_file <- minimal_pna_pxl_file()
seur_obj <- ReadPNA_Seurat(pxl_file)
#> ✔ Created a <Seurat> object with 5 cells and 158 targeted surface proteins
seur_obj[["PNA"]]
#> PNAAssay data with 158 features for 5 cells
#> Top 10 variable features:
#> HLA-ABC, B2M, CD11b, CD11c, CD18, CD82, CD8, TCRab, HLA-DR, CD45
#> Loaded CellGraph objects:
#> 0
library(pixelatorR)
pxl_file <- minimal_pna_pxl_file()
seur_obj <- ReadPNA_Seurat(pxl_file)
#> ✔ Created a <Seurat> object with 5 cells and 158 targeted surface proteins
pna_assay <- seur_obj[["PNA"]]
pna_assay <- subset(pna_assay, cells = colnames(pna_assay)[1:2])
pna_assay
#> PNAAssay data with 158 features for 2 cells
#> Top 10 variable features:
#> HLA-ABC, B2M, CD11b, CD11c, CD18, CD82, CD8, TCRab, HLA-DR, CD45
#> Loaded CellGraph objects:
#> 0
library(pixelatorR)
library(dplyr)
pxl_file <- minimal_pna_pxl_file()
seur_obj <- ReadPNA_Seurat(pxl_file)
#> ✔ Created a <Seurat> object with 5 cells and 158 targeted surface proteins
pna_assay <- seur_obj[["PNA"]]
# Merge two data sets
pna_assay_merged <-
merge(pna_assay, pna_assay, add.cell.ids = c("A", "B"))
pna_assay_merged
#> PNAAssay data with 158 features for 10 cells
#> First 10 features:
#> HLA-ABC, B2M, CD11b, CD11c, CD18, CD82, CD8, TCRab, HLA-DR, CD45
#> Loaded CellGraph objects:
#> 0
# Merge multiple data sets
pna_assay_list <- list(pna_assay, pna_assay, pna_assay)
pna_assay_merged <-
merge(pna_assay_list[[1]], pna_assay_list[-1], add.cell.ids = c("A", "B", "C"))
pna_assay_merged
#> PNAAssay data with 158 features for 15 cells
#> First 10 features:
#> HLA-ABC, B2M, CD11b, CD11c, CD18, CD82, CD8, TCRab, HLA-DR, CD45
#> Loaded CellGraph objects:
#> 0